Species-Specific Diversity of a Fixed Motor Pattern: The Electric Organ Discharge of Gymnotus

نویسندگان

  • Alejo Rodríguez-Cattaneo
  • Ana Carolina Pereira
  • Pedro A. Aguilera
  • William G. R. Crampton
  • Angel A. Caputi
چکیده

Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of the electrogenic system: a) the variously timed neuronal inputs to different groups of electrocytes; b) the appearance of both rostrally and caudally innervated electrocytes, and c) changes in the responsiveness of the electrocyte membrane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.

A complete understanding of animal signal evolution necessitates analyses of both the proximate (e.g. anatomical and physiological) mechanisms of signal generation and reception, and the ultimate (i.e. evolutionary) mechanisms underlying adaptation and diversification. Here we summarize the results of a synthetic study of electric diversity in the species-rich neotropical electric fish genus Gy...

متن کامل

Waveform diversity of electric organ discharges: the role of electric organ auto-excitability in Gymnotus spp.

This article shows that differences in the waveforms of the electric organ discharges (EODs) from two taxa are due to the different responsiveness of their electric organs (EOs) to their previous activity (auto-excitability). We compared Gymnotus omarorum endemic to Uruguay (35 degrees South, near a big estuary), which has four components in the head to tail electric field (V(1) to V(4)), with ...

متن کامل

Changes in electric organ discharge after pausing the electromotor system of Gymnotus carapo.

During their entire lives, weakly electric fish produce an uninterrupted train of discharges to electrolocate objects and to communicate. In an attempt to learn about activity-dependent processes that might be involved in this ability, the continuous train of discharges of intact Gymnotus carapo was experimentally interrupted to investigate how this pausing affects post-pause electric organ dis...

متن کامل

Electric Imaging through Evolution, a Modeling Study of Commonalities and Differences

Modeling the electric field and images in electric fish contributes to a better understanding of the pre-receptor conditioning of electric images. Although the boundary element method has been very successful for calculating images and fields, complex electric organ discharges pose a challenge for active electroreception modeling. We have previously developed a direct method for calculating ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008